TBM File Format Specification:
Major Revision 2

Table of Contents

Introduction

Changes

Definitions

File extensions

Basic Types

Error Codes

Structure

Header
Signature
Version (major, minor, patch)
Major revision (m. rev)
Minor revision (n. rev)
Author information (title, artist, copyright)
icount, scount and wcount
System
Reserved

Payload
Blocks
Block types
Block ordering
COMM block format
SONG block format
INST block format
WAVE block format

Terminator

EOF

Module Piece Format
Structure
Header
Payload

Upgrading

© © © 3 O U b= W W NN

NN NN N DNNDN R R B R R R, Rl |l)))
W NN NDNDR R O OB WNDNDNDNDIDNR O O o O

This document is currently a draft. Changes may occur at any time.

IMPORTANT
Specification will be finalized for the libtrackerboy v0.8.0 release.

Introduction

This document is a formal specification of the file format for TrackerBoy module files, or *.tbm files.
This document is for major revision 2 of the file format.

A Module file is a serialized form of the Module object.

The libtrackerboy library provides a reference implementation for serializing and deserialing
module files with this format. See the io module for more documentation.

NOTE All multi-byte fields in this specification are stored in little-endian byte order.

Changes

Major 2 introduces the following changes to the format:

* Added a Float32 type to the specification.
* The customFramerate field in the header is now a Float32 instead of Uint16.
* Added systemOverride and customFramerateOverride fields to the SongFormat record.
* Replaced the initial envelope setting with a sequence in INST blocks
o Added a new sequence to INST blocks, skEnvelope

o Replaced the InstrumentFormat record with a single Uint8 byte being the channel setting

This allows for two new features: per-song timing and envelope sequences.

https://stoneface86.github.io/libtrackerboy/docs/develop/libtrackerboy/data.html#Module
https://stoneface86.github.io/libtrackerboy/docs/develop/libtrackerboy/io.html

Definitions

Module

A container of songs, instruments and waveforms. Instruments and waveforms are shared
between all songs. A module can store up to 256 songs, 64 instruments and 64 waveforms.

Module Piece

An individual part of the module as a song, instrument or waveform. This individual part can be
stored as a separate file.

Order

Song order data, a list of OrderRows that determine each pattern in the song.

OrderRow

A track id assignment for each channel. Determines the tracks which make a pattern.

Pattern

A collection of Tracks, one for each channel.

Track

Song data for a single channel. A Track is a list of TrackRows.

File extensions

It is recommended that the following file extensions are used for files adhering to this specification:

*thm

TrackerBoy Module file

*thi

TrackerBoy Instrument file

*ths
TrackerBoy Song file

*thw

TrackerBoy Waveform file

Basic Types

Below are basic data types used throughout the format

Type name
Uint8
BiasedUint8
Char

Bool

Uint16
Uint32

LString

Float32

Size (bytes)

1
1

N N = =

+ length

Description

Unsigned 8-bit integer (0-255)

Unsigned 8-bit integer, biased form (1-256)

8-bit Character type

Boolean as an uint8 (0 for false, nonzero for true)
Unsigned 16-bit integer, in little endian (0-65536)
Unsigned 32-bit integer, in little endian

Length-prefixed UTF-8 string, string data prefixed by a
Uint16 length

IEEE 754 single-precision floating point number

Error Codes

Below is a list of error codes possible when deserialing/serializing a module file. After processing a
file, one of these error codes, or Format Result (fr), is given.

Identifier
frNone
frInvalidSignature

frinvalidRevision

frCannotUpgrade

frInvalidSize
frIinvalidCount
frInvalidBlock
frinvalidChannel
frInvalidSpeed
frinvalidRowCount
frinvalidRowNumber
frInvalidld
frDuplicatedId
frInvalidTerminator
frReadError

frWriteError

Code
0
1
2

© 00 9 o U1 b

11
12
13
14
15

Description
No error, format is acceptable
File has an invalid signature

File has an unrecognize revision, possibly from a newer
version of the format

An older revision file could not be upgraded to the current
revision

A payload block was incorrectly sized

The icount and/or wcount in the header was too big

An unknown identifier was used in a payload block

The format contains an invalid channel in a payload block
The format contains an invalid speed in a SONG block

A TrackFormat’s rows field exceeds the Song’s track size
A RowFormat’s rowno field exceeds the Song’s track size
An INST or WAVE block contains an invalid id

Two INST blocks or two WAVE blocks have the same id
The file has an invalid terminator

An read error occurred during processing

A write error occurred during processing

Structure

A TrackerBoy module consists of a Header and a Payload.

fmmmmmmmmm e S LT
| |

| Header | Payload

| 160 bytes | size varies

| |

fmmmmmmemm e T
+0 +160

Header

The figure below defines the Header structure used in all file types. All multi-byte fields are stored
in little-endian. The size of the header is a fixed 160 bytes, with any unused space marked as
reserved. Reserved fields can be utilized for future revisions of the format. Reserved fields should
be set to zero, but this is not enforced.

The layout of the header depends on the header revision, located in offset 24. The current revision
of the header is shown below.

T2 4-mmmmmm +
| version major |
TO H-mmmmmm o +
| version minor |
20 H-mm e +
| version patch |
24 4---------- oo S EEE L L L e e +
| m. rev | n. rev reserved |
28 +---------- et G P +
| |
| |
| |
| title |
| |
| |
| |
| |
60 +------mmmmmem oo +
| I
| |
| I
| artist |
| |
| |
| I
| |
02 4+------m e |

| |
: :
| copyright |
| |
| I
| |

[dpeemsmmmosssae s s s s s s s s s s e a e +*
| icount | scount | wcount | system |
128 +---------- R e dommm - +
| customFramerate |
T L +
| I
I |
| |
| reserved |
| I
I |
I I
| I
i) fmmmmmssssssssssssssssosssossssosooomommmmos +

Offset Size Type Field name

+0 12 Char[12] signature

+12 4 Uint32 versionMajor
+16 4 Uint32 versionMinor
+20 4 Uint32 versionPatch
+24 1 Uint8 m. rev

+25 1 Uint8 n.rev

+26 2 Char[2] reserved

+28 32 Char[32] title

+60 32 Char[32] artist

+92 32 Char[32] copyright
+124 1 Uint8 icount

+125 1 BiasedUint8 scount

+126 1 Uint8 wcecount

+127 1 Uint8 system

+128 4 Float32 customFramerate
+132 28 Char([28] reserved
Signature

Every TrackerBoy file begins with this signature:

Table 1. TBM Signature format
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
l\@! ITI IRI IAI |Cl lKl IEI IRI IBI |Ol IY| I\@l

in order to identify the file as a TrackerBoy file.

Version (major, minor, patch)

Version information is stored as three 4-byte words. This information determines which version of
trackerboy that created the file. Versioning is maintained by keeping a major and minor version,
followed by a patch number. For example, if the trackerboy version is v1.0.2, then the header’s
version fields will contain 0x1 0x0 and 0x2 for major, minor and patch, respectively.

Major revision (m. rev)

This version number indicates a breaking change for the file format. Starts at 0 and is incremented
whenever the layout of the header or payload changes. TrackerBoy will not attempt to read
modules with a newer major version, but can attempt to read older versions (backwards-

compatible).
Examples of breaking changes:

* Modifying the layout of the Header structure
» Adding/removing blocks to the payload
* Modifying the format of a payload block

Minor revision (n. rev)

This version number indicates a change in the format that is forward-compatible with older
versions. Changes such as utilizing a reserved field in the header.

TrackerBoy can read any module file as long as its major revision is less than or
NOTE equal to the current revision. Saving always uses the current revision, so saving an
older major version is a one-way upgrade.

Author information (title, artist, copyright)

These fields in the header are fixed 32 byte strings. Assume ASCII encoding. Any unused characters
in the string should be set to 0 or \0. Since these strings are fixed, null-termination is not needed.

The size and naming of these strings are identical to the ones in *gbs file format.

NOTE
This is intentional, as exporting to gbs is a planned feature.

icount, scount and wcount

icount

instrument count

scount

song count

wcount

waveform count

These counter fields determine the number of INST, SONG and WAVE blocks present in the payload,
respectively. icount and wcount can range from 0-64 and is unbiased. scount can range from 0-255
and is biased (a value of 0 means there is 1 SONG block).

System

The system field determines which Game Boy model this module is for. Since the driver is typically
updated every vblank, the system field determines the framerate, tick rate or vblank interval for
the driver. The available choices are listed in the following table:

10

Table 2. Valid system values

Identifier Value System name Tick rate
systemDmg 0 DMG 59.7 Hz
systemSgb 1 SGB 61.1 Hz
systemCustom 2 N/A varies

If the system is systemCustom, then a custom tick rate is used instead of the system’s vblank. The
custom tick rate is stored in the customFramerate field of the header. This custom tick rate must be a
positive number and nonzero. The implementation should default to 30 fps when the custom tick
rate does not meet this criteria.

If the system does not match any of these values, then the implementation should treat the system
as the default, systemDmg.

Reserved

The remainder of the header is the reserved field(s). This is an unused section that may be utilized
in future versions of the format if needed.

This field should be zeroed but the specification does not require it. The field can be safely ignored
when processing module files.

11

Payload

The payload is located right after the header (offset 160). It contains a variable number of "blocks"
or tagged data with a size.

Blocks

A block in the payload contains three parts: the id, the length and the data. The format of the block
is shown below:

Table 3. Format of a payload block.

Offset Size Description
0 4 Identifier

4 4 Length

8 Length Data
Block types

Each block has an identifier, which determines the type of data present in the block. The table
below lists all recognized identifiers in the payload.

Table 4. Block types used in TBM files

Identifier Value (Uint32) Description

"COMM" 0x4D4D4F43 User set comment data for a module.
"SONG" 0x474E4F53 Container for a single song.

"INST" 0x54534E49 Container for a single instrument.
"WAVE" 0x45564157 Container for a single waveform.

Block ordering

Blocks are stored categorically by type in the following order:

Table 5. Order and total number of blocks in the payload

Order Identifier Count
1 COMM 1

2 SONG 1-256
3 INST 0-64
4 WAVE 0-64

A payload will always have exactly one COMM block, at least one SONG block, and 0 or more INST
and WAVE blocks.

12

COMM block format

The COMM block just contains a UTF-8 string that is the user’s comment data. The string is not null-
terminated since the length of the string is the length of the block. If the user has no comment set,

then this block is empty (Iength = 0).

13

SONG block format

A SONG block contains the data for a single song in the module. Songs are stored in the same order
as they were in the module’s song list. The first song block is song #0 and so on.

Song data is composed of the following, in this order:

1. The name, LString
2. A SongFormat record
3. The song order, as an array of OrderRow or Char[4][patternCount]

4. The track data, as a sequence of TrackFormat and RowFormat records

Song name

The first part of a SONG block is the song’s name, as an LString.

SongFormat

Following the name is a SongFormat record:

Offset Size Type Field name

+0 1 BiasedUint8 rowsPerBeat

+1 1 BiasedUint8 rowsPerMeasure

+2 1 Uint8 speed

+3 1 BiasedUint8 patternCount

+4 1 BiasedUint8 rowsPerTrack

+5 2 Uint16 numberOfTracks

+7 1 Uint8 numberOfEffects

+8 1 Uint8 systemOverride

+9 4 Float32 customFramerateOverride
rowsPerBeat

number of rows that make up a beat, used by the front end for highlighting and tempo
calculation.

rowsPerMeasure

number of rows that make up a measure, used by the front end for highlighting.

speed

Initial speed setting for the song in Q4.4 format

patternCount

number of patterns for the song

14

rowsPerTrack

the size, in rows, of a track (all tracks have the same size).

numberOfTracks

number of tracks stored in this song block.

numberOfEffects

this byte contains the number of effect columns visible for each channel. Each count ranges
from 1-3 and is stored as a 2 bit number in this byte. Bits 0-1 are the count for CH1, bits 2-3 are
the count for CH2 and so on.

NOTE This value is for UI purposes only and has no effect on playback!

systemOverride

This byte determines if the song should use a different tick rate than the one specified in the
module. The following table shows all possible values:

Value System Description
0 N/A Use the module’s system setting (default)
systemDmg Force DMG system
2 systemSgh Force SGB system
3 systemCustom Force custom framerate using customFramerateOverride field.

customFramerateOverride

The custom framerate to use if systemOverride was set to 3. This value must be a positive
number.

Song Order

Next is the song order, an array of OrderRow records with the dimension being the patternCount
field from the song format record. An OrderRow record is a set of 4 Uint8 track ids, with the first
being the track id for channel 1 and the last being the id for channel 4.

Track Data

Finally, the rest of the block contains the pattern data for every track in the song. Each track gets its
own TrackFormat record and an array of RowFormat records.

The TrackFormat record:

Offset Size Type Field name
+0 1 Uint8 channel

+1 1 Uint8 trackld

+2 1 BiasedUint8 rows

15

channel

determines which channel the track is for. Valid values 0-3.

trackId

determines the track id to use for this track

rows

the number of RowFormat records that follow this structure

The RowFormat record:

Offset Size Type Field name

+0 1 Uint8 rowno

+1 8 TrackRow rowdata
rowno

the index in the track’s row array to set

rowdata

the data to set at this index, where the TrackRow type is:

Offset Size Type Field name
+0 1 Uint8 note

+1 1 Uint8 instrument
+2 6 Effect[3] effects

with Effect being:

Offset Size Type Field name
+0 1 Uint8 effectType
+1 1 Uint8 effectParam

and effectType should be any of the following:

Value Effect Syntax Identifier

-- etNoEffect
1 Bxx etPatternGoto
2 C00 etPatternHalt
3 Dxx etPatternSkip
4 Fxy etSetTempo
5 Txx etSfx
6 Exx etSetEnvelope

16

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

The last RowFormat record for the last track ends the SONG block.

VOx
10x

Hxx
Sxx
Gxx
L00
Oxy
1xx
2XX
3xX
4xy
SXX
Pxx
Qxy
Rxy

Jxy

etSetTimbre
etSetPanning
etSetSweep
etDelayedCut
etDelayedNote
etLock
etArpeggio
etPitchUp
etPitchDown
etAutoPortamento
etVibrato
etVibratoDelay
etTuning
etNoteSlideUp
etNoteSlideDown

etSetGlobalVolume

17

INST block format

An INST block contains the data for a single instrument. The data is structured in this order:

1. The instrument’s id, Uint8

2. The instrument’s name, LString

3. The instrument’s channel, Uint8

4. 5 sequences each composed of:
a. A SequenceFormat record

b. The sequence’s data

Id and Name

The INST block data begins with a 1 byte id (0-63), followed by an LString name.

NOTE WAVE blocks also begin with an id and name in the same format.

Channel

Next is a single byte representing the instrument’s channel setting. This byte must be either 0, 1, 2
or 3 for CH1, CH2, CH3, CH4, respectively.

Instruments can be used on any channel, this setting is only used for previewing on

NOTE o
the set channel, as well as organizational purposes.

Sequence data

Following the InstrumentFormat record is the sequence data for each of the instrument’s
sequences. Data for a sequence is structured as a SequenceFormat record followed by the sequence
data. There are five kinds of sequences for every instrument. The kind of sequence the data is for is
determined by its order in the block:

Order SequenceKind

0 skArp

1 skPanning
2 skPitch

3 skTimbre

4 skEnvelope

The SequenceFormat record:

Offset Size Type Field name
+0 2 Uint16 length

18

+2 1 Bool loopEnabled

+3 1 Uint8 loopIndex

length

The length of the sequence data. Following this record will be this number of Uint8 bytes that are
the sequence’s data. Valid values 0-256.

loopEnabled

Determines if this sequence has a loop index.

loopIndex

The index of the loop point.

19

WAVE block format

A WAVE block contains the data for a single waveform. The data is structured in this order:

1. The waveform’s id, Uint8

2. The waveform’s name, LString

3. The waveform’s data, a 16 byte array of packed 4-bit PCM samples
id and name

Same as INST blocks, the WAVE block’s data begins with the waveform’s id and name.

Waveform data

Next is the waveform’s data, a 16 byte array of 32 4-bit PCM samples, with the same layout as the
Game Boy’s CH3 Wave RAM. The first sample in the waveform is the upper nibble of the first byte in
the array, whereas the last sample is the lower nibble of the last byte in the array.

The waveform data ends the WAVE block.

20

Terminator

A terminator follows the payload, it is the signature, reversed.

Table 6. TBM Terminator format
+0 +1 +2 +3 +4 +5 +6 +7
I\@l IYI IOI IBI |Rl IE| IKI ICI

EOF

The module file should be at end of file (EOF) after the terminator.

+8
IAI

+9
|Rl

+10
I'I'l

+11
l\0|

21

Module Piece Format

Module piece files contain a single part of a module, for easy reuse and sharing. A piece file can
contain either a song (*.tbs), an instrument (*tbi) or a waveform (*tbw).

Structure

A piece file consists of a header followed by a payload. The payload is a single INST, SONG or WAVE
block. A terminator is not used since there is only one block present in the payload.

Header | SONG/INST/WAVE block
26 bytes Size varies

+0 +26 ECF

Figure 1. Structure of a module piece file

Header

The Header for a piece file is the same as the module one, but a reduced variant. This reduced
header contains only the signature, version and revision fields, or bytes 0-25. The fields are exactly
the same as the module format, see the previously defined Header format for more info.

Payload

The payload is a single INST block for *tbi files, a single SONG block for *tbs files or a single WAVE
block for *.thbw files.

The format of these blocks are the same as the ones used in the module file format except for one
key detail: the id is omitted for INST and WAVE blocks.

INST and WAVE blocks will be 1 byte less than their module counterpart, since the

NOTE
Id is omitted.

22

Upgrading
When upgrading a major 1 module to major 2, use the following guidelines:

* The header’s customFramerate field can be safely casted to a Float32 if set.

» Existing SONG blocks should assume values of @ for systemOverride and 0.0f for
customFramerateOverride fields in the SongFormat record.

» The initial envelope setting in INST blocks can easily be converted to an envelope sequence via:

o an empty sequence when initEnvelope was 0

> a sequence with 1 value when initEnvelope was 1, with that value being envelope.

23

	TBM File Format Specification: Major Revision 2
	Table of Contents
	Introduction
	Changes
	Definitions
	File extensions
	Basic Types
	Error Codes
	Structure
	Header
	Signature
	Version (major, minor, patch)
	Major revision (m. rev)
	Minor revision (n. rev)
	Author information (title, artist, copyright)
	icount, scount and wcount
	System
	Reserved

	Payload
	Blocks
	Block types
	Block ordering
	COMM block format
	SONG block format
	INST block format
	WAVE block format

	Terminator
	EOF
	Module Piece Format
	Structure
	Header
	Payload

	Upgrading

